Warsaw 7 July 2022
The SOLIDEA Groups ASMARA platform converts all waste plastics [except PVC] into new biodegradable plastics. So-called PHA-derived plastics have the same characteristics as oil-derived thermo-plastics however as well as being 100% biodegradable PHA’s are biocompatible. To date, these plastics have been critical in the development of many medical procedures though traditionally expensive to produce.
The ASMARA platform marries two technologies a waste-to-energy plant and a bio-refinery at scale into one cookie-cutter project. The technology at the front of the process is Microbial Fermentation where a carbon-rich Hydrogen Producer Gas is forced into a tank of billions of microbes. This Microbial Fermentation process multiplies, fattens and then terminates the life of the microbes so they can be harvested to recreate a range of chemicals, fuels and materials that we use every day.
The waste-to-energy technology at the back end of the process converts solid waste streams into a Hydrogen producer’s Gas. A well demonstrated tried and tested thermo-chemical process which turns solids into gas in the absence of oxygen. There is no smoke because no burning occurs [because there is no oxygen] which is just as well because there is no smokestack or chimney for such emissions.
Hydrogen Producers Gas is created in a slightly negative pressure environment it is rich in hydrogen [H2] and carbon monoxide [CO] and these elements are suspended in nitrogen [N] together with lesser amounts of carbon dioxide [CO2] and a little methane [CH4].
The ASMARA Hydrogen Producers Gas to PHA process
ASMARA like its cousin TITAN are platforms on which to convert abundant and or problematic organic waste into Hydrogen Producer Gas. Since we are converting waste into new materials the process is recycling however since we are producing far superior added-value materials we believe we are upcycling.
ASMARA converts problematic sorted Municipal Solid Waste [MSW] such as plastic together with household waste whilst TITAN convert abundant forest floor residues. Both platforms support different outcomes including [i] Combined Heat and Power [CHP] [ii] Gas to Liquid [GTL] tanking fuels via the fermentation of Polyhydroxyalkanoates [PHA] which produce ethanol or [iii] Bioplastics “nature-like” polymers which can be rolled to make films, extruded to make bottles and profiles or moulded to make components just like typical fossil fuel sourced thermo-plastics.