After AI – Warm Robots

The Machines That Heal—and the Circular Economy They’re Building

She looks almost human. Porcelain skin, careful eyes, anatomical symmetry—delicate, not threatening. A beautiful contradiction. The image evokes a future we’ve long imagined: robots that walk beside us, feel with us, care for us.

But this isn’t the warm robot we meant.

Because the real warm robots—ours—don’t smile or stand. They don’t blink, speak, or age.
They are microbes.
Alive, invisible, programmable.

They live in tanks. They breathe carbon. They manufacture the building blocks of the post-pollution world: fuels, chemicals, nutrients, and materials. And now, aided by generative AI, they are evolving—stacking complexity, mimicking natural processes, and operating with the efficiency of the human brain and the regenerative elegance of skin and bone.

We call this new capability Industrial Lifestacking.
It’s not robotics. It’s regeneration.
Not imitation—but biological infrastructure, scaled.

The Living Stack

Long before artificial intelligence could speak, microbes were building. While generative models were still learning language, fermentation vessels were already producing ethanol, biodegradable polymers, and essential proteins from nothing more than carbon waste and biological design.

What makes this possible is a structure we call the Living Stack—a three-layered system that turns industrial chaos into organic precision:

AI serves as the design layer, where biological systems are mapped, metabolic pathways are simulated, and yield efficiency is optimised.
Gene Editing functions as the software layer, rewriting microbial DNA to perform intentional functions—from synthesising alcohols to building amino acid chains.
Targeted Microbial Fermentation (TMF) forms the hardware layer, where gas-fed microbes in controlled environments transform design and code into physical product.

This stack doesn’t run on electricity alone. It runs on carbon. It doesn’t output noise or abstraction. It outputs life.

Syngas Project Pioneering Solutions for a Healthier Future

 Mr Hyde

Reclaiming Insulin Sovereignty: TITAN and ASMARA Platforms for Mass Biomanufacturing in Europe

Breaking the Cartel: Insulin, Inequality, and the Opportunity for European Leadership

At the heart of the global diabetes crisis lies a quiet but devastating monopoly: a life-saving medicine held hostage by a handful of manufacturers. Despite insulin being off-patent for decades, just three global pharmaceutical giants dominate the market—dictating pricing, supply, and access. This concentration of control has limited the availability of affordable insulin, especially in regions already under economic pressure.

In the United States, insulin prices have soared beyond reason. Europe, including Poland and other Central and Eastern European nations, now faces similar systemic risks: rising diabetes rates, increasing healthcare costs, and inadequate local production capacity. But amid this crisis lies a chance to rewrite the pharmaceutical supply chain—through a bold, sovereign European solution: the TITAN and ASMARA platforms.

The Insulin Crisis: A Manufactured Scarcity

Insulin is not a rare or exotic molecule. It has been biosynthesised for over 40 years using recombinant DNA technology. The science is well-understood. The demand is clear. And yet, millions of people globally still struggle to access it due to pricing structures, regulatory lock-ins, and lack of local production.

  • Patients ration insulin to make it last—resulting in amputations, blindness, kidney failure, and death.
  • Governments overspend on cartel-priced imports—diverting budgets from prevention and education.
  • Local biomanufacturing is nearly nonexistent—especially in rural or post-industrial regions where new health infrastructure is most needed.

Europe’s current strategy, relying on imports and foreign-owned production, offers no resilience, no price control, and no autonomy.

TITAN and ASMARA: A Platform for Pharmaceutical Sovereignty

The TITAN (rural) and ASMARA (urban) platforms are not pharma factories in the traditional sense. They are modular, circular, multi-output bio-industrial systems. Originally designed to transform biomass and waste into hydrogen producer gas (HPG) and ethanol, these platforms now represent the future of distributed biomanufacturing—including insulin.

Each platform features:

  • Renewable, 24-hour power and heat, generated from local waste streams
  • Targeted Microbial Fermentation (TMF) stations, already capable of industrial protein synthesis
  • CO₂-ready infrastructure for enhanced fermentation using waste or captured carbon
  • A scalable, cookie-cutter design that enables low-cost replication across the EU

By adding a dedicated pharmaceutical-grade fermentation unit, any TITAN or ASMARA site can pivot to produce biosynthetic insulin using engineered microbial strains like E. coli or yeast—in clean, stable, sovereign-controlled conditions.

This isn’t hypothetical. TITAN’s ethanol lines already handle 50,000 litres per day. The same bioreactors and feedstock management protocols can be adapted to pharmaceutical production with minimal redesign.

ASMARA: Unlocking Pandora’s Box for Municipal Waste

The problem with MSW is the three C’s: Comingled, Cogglomerated and Contaminated

Pandoras Box

In mythology, Pandora’s Box released the world’s evils. In the case of ASMARA, opening the box reveals something far more hopeful: the transformation of society’s most problematic waste streams into usable, nature-like resources. At its core, ASMARA is a hydrogen producer gas (HPG) and fermentation platform tailored for the complex challenge of Municipal Solid Waste (MSW). It is TITAN’s urban twin—engineered for cities, built for resilience, and future-proofed for circularity.

The ASMARA Breakthrough: Turning Plastic Waste into Resource

Most cities today are drowning in non-recyclable plastic waste—films, containers, food packaging, multi-layer composites, and even rubber tires, often contaminated with paper labels or bonded with incompatible polymers. These conglomerates clog sorting lines, evade recycling plants, and are routinely landfilled or incinerated.

ASMARA turns this problem on its head.

Unlocking the Future: Syngas Project’s TITAN and the Evolution of Sustainable Bioeconomy

Steve Walker Warsaw 27:11:2023

In the heart of Poland, Syngas Project, in collaboration with technical partners and innovators, is embarking on a groundbreaking journey, tendering the first of twelve TITAN installations poised to revolutionize the utilization of forest waste. This endeavour is not just about energy production but the orchestration of a holistic supply chain, strategically designed to yield more than 500,000 litres per day of Sustainable Aviation Fuel (SAF) and Biodiesel through the Alcohol-to-Jet (ATJ) pathway. The vision extends beyond conventional paradigms, with a keen focus on next-generation outcomes propelled by cutting-edge technologies like CRISPR.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

Setting the Stage: TITAN’s Forest Waste Transformation

TITAN, the cornerstone of Syngas Project’s innovative portfolio, is not merely a waste-to-energy solution; it is a catalyst for systemic change. The first twelve TITAN installations are strategically positioned to convert forest waste, addressing the environmental challenge of residues from clear-cut logging activities. By harnessing this otherwise underutilized resource, TITAN is poised to deliver a daily output of 2nd generation ethanol (2G EtOH), laying the foundation for a sustainable supply chain.

Supply Chain Dynamics: From Forest Waste to SAF and Biodiesel

The supply chain orchestrated by Syngas Project and its technical partners is a symphony of efficiency and sustainability. As TITAN transforms forest waste into 2G EtOH, this high-value bioethanol becomes a precursor for the production of SAF and Biodiesel. The Alcohol-to-Jet pathway, a proven and eco-friendly method, unlocks the potential to cater to the aviation industry’s growing demand for sustainable alternatives. The envisioned daily output of more than 500,000 litres is a testament to the scalability and impact of TITAN in shaping the renewable energy landscape.

Beyond Conventional Boundaries: CRISPR and Next-Generation Outcomes

In the quest for sustainability, Syngas Project’s technical partners and innovators stand at the forefront of innovation, utilizing advanced tools like CRISPR to engineer microbes for multiple high-yield outcomes. Bacteria, yeast, and other microorganisms, traditionally associated with specific functions, are now being reprogrammed to serve a broader purpose. This groundbreaking approach allows for the customization of microbial behavior, opening avenues for the production of not only fuels but also chemicals and polymers.

Syngas Project’s TITAN: A Catalyst for Renewable Energy and Circular Economy Transformation

Warsaw 12 October 2023

In the heart of Poland, the Syngas Project, a subsidiary of London-based SOLIDEA Group Ltd, stands as a pioneering force in sustainable energy with its groundbreaking TITAN project. This short article delves into the evolution and impact of the Syngas Project, highlighting the transformative journey from the PowerCan project to the development of TITAN.

The PowerCan Project and TITAN’s Genesis:

The roots of the Syngas Project trace back to the PowerCan project at RUMIA shipyards in Gdynia in 2017, Poland. From these beginnings, the team embarked on the ambitious mission to create TITAN, initially conceived as a “Cookie Cutter” 20MW midsized, distributed, utility-scale modular Combined Heat and Power (CHP) plant with two production islands. Notably, in 2019, Island Two underwent a remarkable transformation into a Microbial Fermentation Unit, showcasing the project’s adaptability and commitment to cutting-edge technologies.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

Renewable Electricity and Biofuel Production:

Island One of TITAN continues to serve as a CHP plant, providing renewable electricity on demand. This sustainable power is not only utilised to fuel TITAN’s operations but also exported, contributing to the broader energy landscape. TITAN’s capability to produce spare renewable electricity on Island One mitigates feedstock risk through “reach and cache” policies implemented to capitalise on severe weather and seemingly more common 100-year adverse climate events which could risk the short-term availability of feedstock in future.

Simultaneously, Island Two boasts the daily production of 60,000 litres of 2G EtOH (Ethanol) through microbial fermentation and adding a significant renewable fuel source to the market. Syngas Project’s strategy is to build 12 TITAN in Poland, enough 2G EtOH (Ethanol) to supply Syngas Project’s own SAF Refinery. A local SAF refinery in Poland would establish Polish Airports as the most desirable hubs in Europe for local and intercontinental carriers feeding passengers in and out of Europe and from Europe’s dead centre, SAF being the main catalyst for success.

ASMARA Hydrogen Producers Gas to Microbial Fermentation the key to upcycling thermoplastics

Warsaw 7 July 2022

The SOLIDEA Groups ASMARA platform converts all waste plastics [except PVC] into new biodegradable plastics. So-called PHA-derived plastics have the same characteristics as oil-derived thermo-plastics however as well as being 100% biodegradable PHA’s are biocompatible. To date, these plastics have been critical in the development of many medical procedures though traditionally expensive to produce.

The ASMARA platform marries two technologies a waste-to-energy plant and a bio-refinery at scale into one cookie-cutter project. The technology at the front of the process is Microbial Fermentation where a carbon-rich Hydrogen Producer Gas is forced into a tank of billions of microbes. This Microbial Fermentation process multiplies, fattens and then terminates the life of the microbes so they can be harvested to recreate a range of chemicals, fuels and materials that we use every day.

The waste-to-energy technology at the back end of the process converts solid waste streams into a Hydrogen producer’s Gas. A well demonstrated tried and tested thermo-chemical process which turns solids into gas in the absence of oxygen. There is no smoke because no burning occurs [because there is no oxygen] which is just as well because there is no smokestack or chimney for such emissions.

Hydrogen Producers Gas is created in a slightly negative pressure environment it is rich in hydrogen [H2] and carbon monoxide [CO] and these elements are suspended in nitrogen [N] together with lesser amounts of carbon dioxide [CO2] and a little methane [CH4].

The ASMARA Hydrogen Producers Gas to PHA process 

ASMARA like its cousin TITAN are platforms on which to convert abundant and or problematic organic waste into Hydrogen Producer Gas. Since we are converting waste into new materials the process is recycling however since we are producing far superior added-value materials we believe we are upcycling.

ASMARA converts problematic sorted Municipal Solid Waste [MSW] such as plastic together with household waste whilst TITAN convert abundant forest floor residues. Both platforms support different outcomes including [i] Combined Heat and Power [CHP] [ii] Gas to Liquid [GTL] tanking fuels via the fermentation of Polyhydroxyalkanoates [PHA] which produce ethanol or [iii] Bioplastics “nature-like” polymers which can be rolled to make films, extruded to make bottles and profiles or moulded to make components just like typical fossil fuel sourced thermo-plastics.