TITAN next generation ethanol and the decarbonisation of our skies

Revised: Steve Walker 20.04.2025

TITAN: Next-Generation Ethanol and the Decarbonisation of Our Skies

As aviation and transport fuel regulations tighten across Europe, second-generation ethanol (2G EtOH) has emerged as a cornerstone in the EU’s clean fuel strategy. At the heart of this transition is TITAN, a bio-engineering platform that transforms forest waste into renewable fuel, replacing petroleum-based inputs with high-value, low-emission alternatives.

TITAN is not just a plant — it is a statement of intent. It reflects a deep commitment to energy sovereignty, local feedstock utilisation, and a truly circular economy. It also represents a strategic leap forward for Poland’s aviation sector, offering a domestic solution to one of Europe’s most urgent climate compliance challenges.

2G Ethanol: The Core of TITAN’s Mission

TITAN’s primary objective is the production of advanced, non-food-based 2G EtOH, sourced entirely from waste forest biomass. This includes residues left on the forest floor, non-virgin woody biomass, and materials historically destined for landfilling or low-grade combustion.

Using a proprietary Hydrogen Producer Gas (HPG) to Targeted Microbial Fermentation (TMF) process, TITAN extracts renewable carbon and hydrogen from biomass, converting it into 2G EtOH with near-zero refinery emissions and no fossil fuel input. The platform’s dual HPG island architecture ensures continuous and decentralised gas supply for both electricity/heat and fermentation feedstock.

This modular structure allows TITAN to function as a standalone, grid-independent, smoke-free, zero-coal facility, setting a new benchmark for carbon-negative industrial energy systems.

SAF Rollout and the Alcohol-to-Jet Pathway

The second phase of TITAN’s rollout will focus on producing Sustainable Aviation Fuel (SAF) through the Alcohol-to-Jet (AtJ) pathway. The AtJ process refines TITAN’s 2G ethanol into Jet-A1 compliant, drop-in aviation fuel, ready to blend at refuelling depots across Europe. The first ten TITAN installations produce enough 2G EtOH to supply an AtJ refinery producing Jet-A1 and Biodeisel

This development is perfectly aligned with the ReFuelEU Aviation Regulation, which mandates all EU airports begin blending sustainable aviation fuels starting at 2% in 2025, rising to 6% in 2030, 20% by 2035, and 28% by 2050. Airlines that do not comply must pay penalties.

TITAN’s SAF production will therefore not only enable Polish airlines to comply — it will allow them to lead. By producing SAF locally, Poland can secure its own fuel supply, reduce its carbon intensity per flight, and offer intercontinental connections from a net-zero baseline.

From Waste to Sovereignty Alternatives – Chinese Hamster Ovary (CHO) Cells

From Waste to Sovereignty: How TITAN and ASMARA Build Europe’s New Biomanufacturing Landscape

TITAN and ASMARA are not just platforms for converting waste into energy. They are flexible, modular bio-manufacturing hubs designed to anchor a new industrial landscape—one built on sovereignty, sustainability, and regional regeneration.

At their core is a powerful integration of Hydrogen Producer Gas (HPG) and Targeted Microbial Fermentation (TMF)—a pairing that unlocks the ability to produce a vast spectrum of high-value outputs: fuels, bioplastics, chemicals, proteins, and even advanced medical bioproducts like CHO (Chinese Hamster Ovary) cells.

But more importantly, these platforms offer a way to reindustrialise rural Europe, create high-quality employment in overlooked regions, and reduce the continent’s dependence on imported fuels, chemicals, and biopharmaceutical precursors.

Syngas Project Pioneering Solutions for a Healthier Future

 Mr Hyde

Reclaiming Insulin Sovereignty: TITAN and ASMARA Platforms for Mass Biomanufacturing in Europe

Breaking the Cartel: Insulin, Inequality, and the Opportunity for European Leadership

At the heart of the global diabetes crisis lies a quiet but devastating monopoly: a life-saving medicine held hostage by a handful of manufacturers. Despite insulin being off-patent for decades, just three global pharmaceutical giants dominate the market—dictating pricing, supply, and access. This concentration of control has limited the availability of affordable insulin, especially in regions already under economic pressure.

In the United States, insulin prices have soared beyond reason. Europe, including Poland and other Central and Eastern European nations, now faces similar systemic risks: rising diabetes rates, increasing healthcare costs, and inadequate local production capacity. But amid this crisis lies a chance to rewrite the pharmaceutical supply chain—through a bold, sovereign European solution: the TITAN and ASMARA platforms.

The Insulin Crisis: A Manufactured Scarcity

Insulin is not a rare or exotic molecule. It has been biosynthesised for over 40 years using recombinant DNA technology. The science is well-understood. The demand is clear. And yet, millions of people globally still struggle to access it due to pricing structures, regulatory lock-ins, and lack of local production.

  • Patients ration insulin to make it last—resulting in amputations, blindness, kidney failure, and death.
  • Governments overspend on cartel-priced imports—diverting budgets from prevention and education.
  • Local biomanufacturing is nearly nonexistent—especially in rural or post-industrial regions where new health infrastructure is most needed.

Europe’s current strategy, relying on imports and foreign-owned production, offers no resilience, no price control, and no autonomy.

TITAN and ASMARA: A Platform for Pharmaceutical Sovereignty

The TITAN (rural) and ASMARA (urban) platforms are not pharma factories in the traditional sense. They are modular, circular, multi-output bio-industrial systems. Originally designed to transform biomass and waste into hydrogen producer gas (HPG) and ethanol, these platforms now represent the future of distributed biomanufacturing—including insulin.

Each platform features:

  • Renewable, 24-hour power and heat, generated from local waste streams
  • Targeted Microbial Fermentation (TMF) stations, already capable of industrial protein synthesis
  • CO₂-ready infrastructure for enhanced fermentation using waste or captured carbon
  • A scalable, cookie-cutter design that enables low-cost replication across the EU

By adding a dedicated pharmaceutical-grade fermentation unit, any TITAN or ASMARA site can pivot to produce biosynthetic insulin using engineered microbial strains like E. coli or yeast—in clean, stable, sovereign-controlled conditions.

This isn’t hypothetical. TITAN’s ethanol lines already handle 50,000 litres per day. The same bioreactors and feedstock management protocols can be adapted to pharmaceutical production with minimal redesign.

How Dark Hydrogen became the New Green

The “new green hydrogen” is “dark bio-hydrogen”, so called after the dark fermentation bio-manufacturing process which creates it green because its manufacture and existence are entirely organic, renewable and waterless. 

We choose to go to the moon JFK 1962 Moonshot Speech
60 years on from JFK moonshot speech

One small step ahead of carbon capture and storage CCS replacing it instead with capture and transformation CCT, thus taking the capture and recycling of waste carbon to the next level is a giant leap for mankind. 60 years on from JFK’s moonshot speech and on its anniversary Joe Biden announced the cure for cancer is the new moonshot and its through bio-technology transformation that will get us there.

TITAN and ASMARA incorporate two technologies on one platform, waste to hydrogen producer gas + microbial fermentation to manufacture fuel, chemical and material products. CCT is a well-proven process for recycling both the carbon at the smoke stack, in the waste we produce and in the waste we throw away as it is for the carbon we have already produced. We are presented with a truly value-added proposition because recycling the carbon we already have obviates the need to dig up more carbon. Through converting solid waste into producer’s gas and CCT emission technology to recycle carbon in the producer’s gas through, microbial fermentation, we can reproduce all of the products we currently manufacture from oil and gas, where the likes of transport fuels, plastics and fertilisers are produced with far less environmental impact. In manufacturing, this great array of products as an added bonus, large quantities of waterless green hydrogen is recovered as a byproduct.        

Dark bio-hydrogen presents a disruptive edge to the idea of hydrogen as an energy carrier because it does not burden our ever-depleting water supply, instead, hydrogen is recovered from changing the state of organic feedstock through a proprietary, bio-manufacturing process where carbon-rich waste biomass or bio-waste is transformed from solid state to a gaseous state and as a feedstock for fermentation.  


ASMARA Hydrogen Producers Gas to Microbial Fermentation the key to upcycling thermoplastics

Warsaw 7 July 2022

The SOLIDEA Groups ASMARA platform converts all waste plastics [except PVC] into new biodegradable plastics. So-called PHA-derived plastics have the same characteristics as oil-derived thermo-plastics however as well as being 100% biodegradable PHA’s are biocompatible. To date, these plastics have been critical in the development of many medical procedures though traditionally expensive to produce.

The ASMARA platform marries two technologies a waste-to-energy plant and a bio-refinery at scale into one cookie-cutter project. The technology at the front of the process is Microbial Fermentation where a carbon-rich Hydrogen Producer Gas is forced into a tank of billions of microbes. This Microbial Fermentation process multiplies, fattens and then terminates the life of the microbes so they can be harvested to recreate a range of chemicals, fuels and materials that we use every day.

The waste-to-energy technology at the back end of the process converts solid waste streams into a Hydrogen producer’s Gas. A well demonstrated tried and tested thermo-chemical process which turns solids into gas in the absence of oxygen. There is no smoke because no burning occurs [because there is no oxygen] which is just as well because there is no smokestack or chimney for such emissions.

Hydrogen Producers Gas is created in a slightly negative pressure environment it is rich in hydrogen [H2] and carbon monoxide [CO] and these elements are suspended in nitrogen [N] together with lesser amounts of carbon dioxide [CO2] and a little methane [CH4].

The ASMARA Hydrogen Producers Gas to PHA process 

ASMARA like its cousin TITAN are platforms on which to convert abundant and or problematic organic waste into Hydrogen Producer Gas. Since we are converting waste into new materials the process is recycling however since we are producing far superior added-value materials we believe we are upcycling.

ASMARA converts problematic sorted Municipal Solid Waste [MSW] such as plastic together with household waste whilst TITAN convert abundant forest floor residues. Both platforms support different outcomes including [i] Combined Heat and Power [CHP] [ii] Gas to Liquid [GTL] tanking fuels via the fermentation of Polyhydroxyalkanoates [PHA] which produce ethanol or [iii] Bioplastics “nature-like” polymers which can be rolled to make films, extruded to make bottles and profiles or moulded to make components just like typical fossil fuel sourced thermo-plastics.