Unlocking the Future: Syngas Project’s TITAN and the Evolution of Sustainable Bioeconomy

Steve Walker Warsaw 27:11:2023

In the heart of Poland, Syngas Project, in collaboration with technical partners and innovators, is embarking on a groundbreaking journey, tendering the first of twelve TITAN installations poised to revolutionize the utilization of forest waste. This endeavour is not just about energy production but the orchestration of a holistic supply chain, strategically designed to yield more than 500,000 litres per day of Sustainable Aviation Fuel (SAF) and Biodiesel through the Alcohol-to-Jet (ATJ) pathway. The vision extends beyond conventional paradigms, with a keen focus on next-generation outcomes propelled by cutting-edge technologies like CRISPR.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

Setting the Stage: TITAN’s Forest Waste Transformation

TITAN, the cornerstone of Syngas Project’s innovative portfolio, is not merely a waste-to-energy solution; it is a catalyst for systemic change. The first twelve TITAN installations are strategically positioned to convert forest waste, addressing the environmental challenge of residues from clear-cut logging activities. By harnessing this otherwise underutilized resource, TITAN is poised to deliver a daily output of 2nd generation ethanol (2G EtOH), laying the foundation for a sustainable supply chain.

Supply Chain Dynamics: From Forest Waste to SAF and Biodiesel

The supply chain orchestrated by Syngas Project and its technical partners is a symphony of efficiency and sustainability. As TITAN transforms forest waste into 2G EtOH, this high-value bioethanol becomes a precursor for the production of SAF and Biodiesel. The Alcohol-to-Jet pathway, a proven and eco-friendly method, unlocks the potential to cater to the aviation industry’s growing demand for sustainable alternatives. The envisioned daily output of more than 500,000 litres is a testament to the scalability and impact of TITAN in shaping the renewable energy landscape.

Beyond Conventional Boundaries: CRISPR and Next-Generation Outcomes

In the quest for sustainability, Syngas Project’s technical partners and innovators stand at the forefront of innovation, utilizing advanced tools like CRISPR to engineer microbes for multiple high-yield outcomes. Bacteria, yeast, and other microorganisms, traditionally associated with specific functions, are now being reprogrammed to serve a broader purpose. This groundbreaking approach allows for the customization of microbial behavior, opening avenues for the production of not only fuels but also chemicals and polymers.

Syngas Project’s TITAN: A Catalyst for Renewable Energy and Circular Economy Transformation

Warsaw 12 October 2023

In the heart of Poland, the Syngas Project, a subsidiary of London-based SOLIDEA Group Ltd, stands as a pioneering force in sustainable energy with its groundbreaking TITAN project. This short article delves into the evolution and impact of the Syngas Project, highlighting the transformative journey from the PowerCan project to the development of TITAN.

The PowerCan Project and TITAN’s Genesis:

The roots of the Syngas Project trace back to the PowerCan project at RUMIA shipyards in Gdynia in 2017, Poland. From these beginnings, the team embarked on the ambitious mission to create TITAN, initially conceived as a “Cookie Cutter” 20MW midsized, distributed, utility-scale modular Combined Heat and Power (CHP) plant with two production islands. Notably, in 2019, Island Two underwent a remarkable transformation into a Microbial Fermentation Unit, showcasing the project’s adaptability and commitment to cutting-edge technologies.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

Renewable Electricity and Biofuel Production:

Island One of TITAN continues to serve as a CHP plant, providing renewable electricity on demand. This sustainable power is not only utilised to fuel TITAN’s operations but also exported, contributing to the broader energy landscape. TITAN’s capability to produce spare renewable electricity on Island One mitigates feedstock risk through “reach and cache” policies implemented to capitalise on severe weather and seemingly more common 100-year adverse climate events which could risk the short-term availability of feedstock in future.

Simultaneously, Island Two boasts the daily production of 60,000 litres of 2G EtOH (Ethanol) through microbial fermentation and adding a significant renewable fuel source to the market. Syngas Project’s strategy is to build 12 TITAN in Poland, enough 2G EtOH (Ethanol) to supply Syngas Project’s own SAF Refinery. A local SAF refinery in Poland would establish Polish Airports as the most desirable hubs in Europe for local and intercontinental carriers feeding passengers in and out of Europe and from Europe’s dead centre, SAF being the main catalyst for success.

How Dark Hydrogen became the New Green

The “new green hydrogen” is “dark bio-hydrogen”, so called after the dark fermentation bio-manufacturing process which creates it green because its manufacture and existence are entirely organic, renewable and waterless. 

We choose to go to the moon JFK 1962 Moonshot Speech
60 years on from JFK moonshot speech

One small step ahead of carbon capture and storage CCS replacing it instead with capture and transformation CCT, thus taking the capture and recycling of waste carbon to the next level is a giant leap for mankind. 60 years on from JFK’s moonshot speech and on its anniversary Joe Biden announced the cure for cancer is the new moonshot and its through bio-technology transformation that will get us there.

TITAN and ASMARA incorporate two technologies on one platform, waste to hydrogen producer gas + microbial fermentation to manufacture fuel, chemical and material products. CCT is a well-proven process for recycling both the carbon at the smoke stack, in the waste we produce and in the waste we throw away as it is for the carbon we have already produced. We are presented with a truly value-added proposition because recycling the carbon we already have obviates the need to dig up more carbon. Through converting solid waste into producer’s gas and CCT emission technology to recycle carbon in the producer’s gas through, microbial fermentation, we can reproduce all of the products we currently manufacture from oil and gas, where the likes of transport fuels, plastics and fertilisers are produced with far less environmental impact. In manufacturing, this great array of products as an added bonus, large quantities of waterless green hydrogen is recovered as a byproduct.        

Dark bio-hydrogen presents a disruptive edge to the idea of hydrogen as an energy carrier because it does not burden our ever-depleting water supply, instead, hydrogen is recovered from changing the state of organic feedstock through a proprietary, bio-manufacturing process where carbon-rich waste biomass or bio-waste is transformed from solid state to a gaseous state and as a feedstock for fermentation.  


Syngas Projects TITAN and ASMARA: “Primed for Carbon Capture Integration”

Warsaw 6 October 2023

In the dynamic landscape of waste transformation, TITAN and ASMARA emerge as adaptive forward-compatible platforms proficient in converting solid waste into producers’ gas, and from hydrogen producers’ gas via microbial fermentation into new and better fuels, chemicals and materials. In a realm where innovation meets sustainability, these platforms unfold a compelling narrative ideal springboards within the realm of Carbon Circular Recycling (CCR).

Future-Proofing for CO2 Integration and Direct Air Capture: A Forward-Thinking Move?

Syngas Project strategically future-proofed TITAN and ASMARA to not only accommodate the intake of third-party CO2 waste from carbon capture devices but also kick-start direct air capture initiatives for CCR. Designed as forward-looking models, these platforms seamlessly integrate with the needs of future carbon capture entrepreneurs, ensuring adaptability for evolving technologies.

“The value proposition for the Direct Air Capture Project is, assured low-cost renewable electricity on demand in addition to an assured long-term off-taker agreement for Co2. For Syngas Projects platforms it’s a valuable and reliable source of CO2 for conversion into new fuels, chemicals and materials.”

“ASMARA: Catalyst for Sustainable Transformation in Waste Management and Renewable Energy Integration”

Warsaw 3 October 2023

In the ever-evolving landscape of sustainable energy and waste management, the Syngas Project’s ASMARA takes centre stage, embodying the Arabic word meaning “to unite.” This essay delves into the essence of ASMARA, its evolution as a successor to the pioneering TITAN, and its transformative role in shaping the future of waste management practices in Poland. As ASMARA steps into the limelight, it symbolizes a holistic approach, uniting innovation, sustainability, and progress.

ASMARA: Sequel to TITAN’s Success:

Derived from the Arabic word meaning “to unite,” ASMARA is the Syngas Project’s next ambitious endeavor following the resounding success of TITAN. As TITAN sets the stage for cutting-edge waste-to-energy solutions, ASMARA follows suit, featuring twelve gasification lines that mirror the proven cookie-cutter approach of its predecessor. In its essence, ASMARA embodies unity—of waste transformation, sustainable practices, and a brighter future for Poland.

Dual Islands of Efficiency:

Building on the success of TITAN, ASMARA introduces dual islands dedicated to distinct functions. Island One houses hydrogen producer gas lines, efficiently converting waste into a hydrogen-rich producer gas that serves as the primary energy source for the entire operation. Meanwhile, on Island Two, the hydrogen producer gas undergoes microbial fermentation, resulting in the production of fuels, chemicals, and materials. This harmonious integration ensures maximum resource utilization, fostering a comprehensive circular economy.

Waste Intake and Sorting Excellence:

ASMARA stands ready to process around 500 tons of diverse waste, including plastics, paper, cardboard, textiles, bone, leather, and wood. The sorting station within ASMARA, a pinnacle of automation, employs magnets for metal separation and gravity for mineral sorting. This fully automated process not only ensures precision but also enhances overall efficiency, making ASMARA a symbol of cutting-edge waste utilization.

TITAN next generation ethanol and the decarbonisation of our skies

Revised: Steve Walker 16.10.2023


Ethanol is poised to be a pivotal player in our future energy landscape, especially in the effort to decarbonize current transportation. This significance is underscored by EU directives mandating increased ethanol blending with petrol and diesel at fuel stations. Simultaneously, global directives emphasize the pivotal role of second-generation ethanol (2G EtOH) in reducing aviation emissions. Following the EU’s inclusion of preferential subsidies to second-generation ethanol production and utilisation in 2021, 2022, and again in 2023, highlighting the imperative to hasten the shift to sustainable fuels, the role of platforms like TITAN in converting forest waste into 2G EtOH gains added importance. This commitment aligns seamlessly with the worldwide emphasis on diminishing carbon emissions and fostering cleaner alternatives.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

TITAN, an innovative platform converting forest waste into 2G EtOH, distinguishes itself with its commitment to sourcing renewable, non-food chain materials. This guarantees that the energy used in the production process is entirely divorced from coal or oil, presenting substantial environmental advantages. As the 2G EtOH market matures, TITAN’s platform technology not only converts waste carbon into advanced fuels, chemicals, and materials but also exemplifies a sustainable and circular approach.

The Hydrogen Producer Gas to Microbial Fermentation process employed by TITAN is transformative, safely and cleanly replacing conventional oil and gas products. With an impressively minimal carbon footprint and almost negligible refinery carbon emissions, TITAN’s 2G EtOH is crafted from 100% renewable local forest waste, conventionally destined for landfills.

ASMARA Hydrogen Producers Gas to Microbial Fermentation the key to upcycling thermoplastics

Warsaw 7 July 2022

The SOLIDEA Groups ASMARA platform converts all waste plastics [except PVC] into new biodegradable plastics. So-called PHA-derived plastics have the same characteristics as oil-derived thermo-plastics however as well as being 100% biodegradable PHA’s are biocompatible. To date, these plastics have been critical in the development of many medical procedures though traditionally expensive to produce.

The ASMARA platform marries two technologies a waste-to-energy plant and a bio-refinery at scale into one cookie-cutter project. The technology at the front of the process is Microbial Fermentation where a carbon-rich Hydrogen Producer Gas is forced into a tank of billions of microbes. This Microbial Fermentation process multiplies, fattens and then terminates the life of the microbes so they can be harvested to recreate a range of chemicals, fuels and materials that we use every day.

The waste-to-energy technology at the back end of the process converts solid waste streams into a Hydrogen producer’s Gas. A well demonstrated tried and tested thermo-chemical process which turns solids into gas in the absence of oxygen. There is no smoke because no burning occurs [because there is no oxygen] which is just as well because there is no smokestack or chimney for such emissions.

Hydrogen Producers Gas is created in a slightly negative pressure environment it is rich in hydrogen [H2] and carbon monoxide [CO] and these elements are suspended in nitrogen [N] together with lesser amounts of carbon dioxide [CO2] and a little methane [CH4].

The ASMARA Hydrogen Producers Gas to PHA process 

ASMARA like its cousin TITAN are platforms on which to convert abundant and or problematic organic waste into Hydrogen Producer Gas. Since we are converting waste into new materials the process is recycling however since we are producing far superior added-value materials we believe we are upcycling.

ASMARA converts problematic sorted Municipal Solid Waste [MSW] such as plastic together with household waste whilst TITAN convert abundant forest floor residues. Both platforms support different outcomes including [i] Combined Heat and Power [CHP] [ii] Gas to Liquid [GTL] tanking fuels via the fermentation of Polyhydroxyalkanoates [PHA] which produce ethanol or [iii] Bioplastics “nature-like” polymers which can be rolled to make films, extruded to make bottles and profiles or moulded to make components just like typical fossil fuel sourced thermo-plastics.

Hydrogen Producers Gas to PHA via Microbial Fermentation, the leather of the future?

Hydrogen is a dynamic building block but if we are to have enough of it to make a difference we are challenged to find alternative ways of getting hold of it, feeding hydrogen producer’s gas to microbes through microbial fermentation nurtures and grows microbes which once processed have the appearance, feel, durability and quality of leather and that’s because the end product is made from or grown out of microbes which replicate collagen. Producing the same biological material leather is made from, in scaled-up bio-manufacturing using hydrogen producer’s gas isn’t just the silver bullet the shoe and car industry was looking for, it also produces waterless green hydrogen as a byproduct  

Alternative Collagen can be produced after recycling waste carbon

Currently, Polyhydroxyalkanoates (PHA) are fermented to produce organic materials such as polymers, once produced these organic polymers are further processed to manufacture bio-compatible, bio-degradable plastics. The same bio-manufacturing process can also produce collagen at scale a replacement for animal skin, leather manufactured by the fermentation and processing of microbes

Though this bio-manufacturing process has been slow to catch on because traditionally it is relatively expensive, compared to low-cost oil-based plastics costs are being cut as producer’s gas demonstrates an ideal carbon-rich, abundant source of feedstock for microbial fermentation.

TITAN converts abundant low-value forest waste whilst ASMARA converts abundant and problematic, sorted municipal solid waste to produce a carbon-rich hydrogen producer’s gas enabling the ramping up of PHA fermentation and with much lower cost than in the previous production facilities. 

PHA products can replace many of the materials we use every day and not only those used to produce the items we only use once. PHA is recyclable, biodegradable, and biocompatible the opportunity to recycle PHA is unlimited and if for any reason PHA materials are landfilled or accidentally become sea fill PHA will happily break down in nature without harming the environment because PHA like natural other material is biocompatible it poses no chemical threat to our health or our environments well being. 

In the very near future, low-cost Hydrogen Producer Gas sourced PHA materials will go mainstream and replace oil-based plastics. As a result, much of the new PHA materials which will enter our supply chain in the next decade could be represented by a product which has been recycled from recovered oil-based thermoplastics as we clean up our environment.    

PHA Collagen the next step forward

Collagen roughly describes the main constructive protein of our bodies, it makes up approximately 30% of our body mass, as it does all mammals. Collagen is the fundament of our connective tissue, our bones, our skin, our tendons and our ligaments they are all made from collagen. 

PHA leather collagen can replace animal products like leather shoes and sneakers, jackets, belts and many other types of apparel that can be produced without the unnecessary environmental impact of fast fashion, most importantly they can be manufactured without the need to raise and slaughter animals for their skins.

Think of the benefits for the car industry to receive readily matching leather collagen hides all of regular size and shape. Mass-produced, PHA leather collagen is highly competitive in cost and ramping up PHA production means more affordability for items such as good quality apparel and footwear with far less production waste. The PHA value proposition for the fashion industry is top-quality materials, at competitive costs and with a zero landfill potential.       

PHA alt leather collagen is produced through Microbial Fermentation an industry enjoying dynamic growth and the potential for becoming a commonplace industrial practice that renders oil redundant in the production of fuels, chemicals and materials.