Warsaw’s First Electrification Was Renewable — and It Lit the Path for a Cleaner Future

March 8th 2025 Warsaw

The technology behind today’s TITAN Project owes much to a quiet lineage of innovators who came long before the era of climate targets and carbon markets. Inspired by these early industrialists, TITAN builds upon a legacy where electricity was local, independent, and renewable by necessity, not marketing. We inherit that history with humility and pride.

In the late 19th century, long before municipal power grids were laid, Warsaw quietly switched on — not from coal, but from wood gas, plant oils, and German-built engines. Electricity in Poland did not arrive with smoke and ceremony. It arrived with intention, resilience, and a clear grasp of available resources.

The first confirmed electric lights in Warsaw came on in 1888, inside the military fortress at Żoliborz. A Deutz gasifier engine, burning wood chips and coke, provided a smokeless, off-grid supply of electricity to illuminate tunnels, barracks, and secure magazines. This was Poland’s first renewable electrification, and it was powered by wood — not wires.

That same year, a second Deutz unit was installed at the Towarowa freight yard, where the Vienna–Warsaw Railway extended eastward via the Warsaw–Terespol line. Contrary to common retellings, the Warsaw–Terespol Railway was laid in standard European gauge, only transitioning to Russian broad gauge at the border town of Terespol. In Warsaw, Towarowa had become one of the busiest and most sensitive freight depots in the region — and its electric lights, powered by a local wood gas engine, served a strategic purpose. On dark winter nights, those lights allowed the military to deter undesirables, track movements, and maintain order amid the chaos of the city’s growing trade and customs corridor.

Then, in 1889, Austrian engineer Marschel & Co. delivered Warsaw’s first commercial electric lighting system to the woollen hand-finishing workshops of Praga, not far from where the vodka factory would soon be built. These workshops, connected to the rising Brühl textile estate, operated without chimneys, without soot — and without interruption. Their Deutz generator lit the benches of men and women who worked wool into fine garments for markets east and west. And they did so two full years before the first coal-fired generator ever arrived at the much-acclaimed vodka distillery.

This was decentralised electricity. It was locally fuelled. It was renewable.

After AI – Warm Robots

The Machines That Heal—and the Circular Economy They’re Building

She looks almost human. Porcelain skin, careful eyes, anatomical symmetry—delicate, not threatening. A beautiful contradiction. The image evokes a future we’ve long imagined: robots that walk beside us, feel with us, care for us.

But this isn’t the warm robot we meant.

Because the real warm robots—ours—don’t smile or stand. They don’t blink, speak, or age.
They are microbes.
Alive, invisible, programmable.

They live in tanks. They breathe carbon. They manufacture the building blocks of the post-pollution world: fuels, chemicals, nutrients, and materials. And now, aided by generative AI, they are evolving—stacking complexity, mimicking natural processes, and operating with the efficiency of the human brain and the regenerative elegance of skin and bone.

We call this new capability Industrial Lifestacking.
It’s not robotics. It’s regeneration.
Not imitation—but biological infrastructure, scaled.

The Living Stack

Long before artificial intelligence could speak, microbes were building. While generative models were still learning language, fermentation vessels were already producing ethanol, biodegradable polymers, and essential proteins from nothing more than carbon waste and biological design.

What makes this possible is a structure we call the Living Stack—a three-layered system that turns industrial chaos into organic precision:

AI serves as the design layer, where biological systems are mapped, metabolic pathways are simulated, and yield efficiency is optimised.
Gene Editing functions as the software layer, rewriting microbial DNA to perform intentional functions—from synthesising alcohols to building amino acid chains.
Targeted Microbial Fermentation (TMF) forms the hardware layer, where gas-fed microbes in controlled environments transform design and code into physical product.

This stack doesn’t run on electricity alone. It runs on carbon. It doesn’t output noise or abstraction. It outputs life.

How Dark Hydrogen became the New Green

The “new green hydrogen” is “dark bio-hydrogen”, so called after the dark fermentation bio-manufacturing process which creates it green because its manufacture and existence are entirely organic, renewable and waterless. 

We choose to go to the moon JFK 1962 Moonshot Speech
60 years on from JFK moonshot speech

One small step ahead of carbon capture and storage CCS replacing it instead with capture and transformation CCT, thus taking the capture and recycling of waste carbon to the next level is a giant leap for mankind. 60 years on from JFK’s moonshot speech and on its anniversary Joe Biden announced the cure for cancer is the new moonshot and its through bio-technology transformation that will get us there.

TITAN and ASMARA incorporate two technologies on one platform, waste to hydrogen producer gas + microbial fermentation to manufacture fuel, chemical and material products. CCT is a well-proven process for recycling both the carbon at the smoke stack, in the waste we produce and in the waste we throw away as it is for the carbon we have already produced. We are presented with a truly value-added proposition because recycling the carbon we already have obviates the need to dig up more carbon. Through converting solid waste into producer’s gas and CCT emission technology to recycle carbon in the producer’s gas through, microbial fermentation, we can reproduce all of the products we currently manufacture from oil and gas, where the likes of transport fuels, plastics and fertilisers are produced with far less environmental impact. In manufacturing, this great array of products as an added bonus, large quantities of waterless green hydrogen is recovered as a byproduct.        

Dark bio-hydrogen presents a disruptive edge to the idea of hydrogen as an energy carrier because it does not burden our ever-depleting water supply, instead, hydrogen is recovered from changing the state of organic feedstock through a proprietary, bio-manufacturing process where carbon-rich waste biomass or bio-waste is transformed from solid state to a gaseous state and as a feedstock for fermentation.