After AI – Warm Robots

The Machines That Heal—and the Circular Economy They’re Building

She looks almost human. Porcelain skin, careful eyes, anatomical symmetry—delicate, not threatening. A beautiful contradiction. The image evokes a future we’ve long imagined: robots that walk beside us, feel with us, care for us.

But this isn’t the warm robot we meant.

Because the real warm robots—ours—don’t smile or stand. They don’t blink, speak, or age.
They are microbes.
Alive, invisible, programmable.

They live in tanks. They breathe carbon. They manufacture the building blocks of the post-pollution world: fuels, chemicals, nutrients, and materials. And now, aided by generative AI, they are evolving—stacking complexity, mimicking natural processes, and operating with the efficiency of the human brain and the regenerative elegance of skin and bone.

We call this new capability Industrial Lifestacking.
It’s not robotics. It’s regeneration.
Not imitation—but biological infrastructure, scaled.

The Living Stack

Long before artificial intelligence could speak, microbes were building. While generative models were still learning language, fermentation vessels were already producing ethanol, biodegradable polymers, and essential proteins from nothing more than carbon waste and biological design.

What makes this possible is a structure we call the Living Stack—a three-layered system that turns industrial chaos into organic precision:

AI serves as the design layer, where biological systems are mapped, metabolic pathways are simulated, and yield efficiency is optimised.
Gene Editing functions as the software layer, rewriting microbial DNA to perform intentional functions—from synthesising alcohols to building amino acid chains.
Targeted Microbial Fermentation (TMF) forms the hardware layer, where gas-fed microbes in controlled environments transform design and code into physical product.

This stack doesn’t run on electricity alone. It runs on carbon. It doesn’t output noise or abstraction. It outputs life.

Leveraging Direct Air Capture (DAC) for Targeted Microbial Fermentation

Harnessing PEGASUS: Direct Air Capture Meets HPG + TMF in the Race to Regenerate Carbon

How TITAN and ASMARA transform carbon from problem to product in line with EU priorities

As Europe confronts rising temperatures, tightening emissions targets, and increasing resource instability, a fundamental shift is underway: carbon is no longer seen only as waste, but as feedstock. This shift is visible in new industrial strategies, circular economy goals, and bioeconomy frameworks—but it needs infrastructure to deliver.

That’s where PEGASUS, a modular Direct Air Capture (DAC) system developed for integration with the TITAN and ASMARA platforms, enters the picture. It offers a breakthrough solution: capturing carbon from the air or industrial sources and transforming it into fuels, chemicals, materials, or even nutrients, via the microbial fermentation infrastructure already embedded within TITAN and ASMARA.

This is not speculative. It is already working in pilot, and it fits squarely within existing and forthcoming EU directives.

TITAN and ASMARA: Carbon-Circular by Design

TITAN, built for rural zones, converts forest and agricultural waste into hydrogen-rich gas (HPG) and uses microbial fermentation (TMF) to convert that gas into second-generation ethanol, biochemicals, and energy. ASMARA performs the same function in urban areas using sorted municipal solid waste (MSW). These platforms are modular, scalable, and already aligned with Europe’s Green Deal, REPowerEU, and Fit for 55 objectives.

Adding PEGASUS enhances these platforms by introducing a steady, high-purity stream of captured CO₂, which TMF microbes can metabolise directly. Rather than storing the carbon underground, as most current DAC-to-CCS models propose, PEGASUS routes the carbon into productive pathways—ensuring economic as well as ecological value.

This becomes especially powerful when blending CO₂ from multiple sources. For example:

  • Captured emissions from cement or steel plants (typically high in volume but lower in purity),
  • Ambient CO₂ captured via PEGASUS DAC (typically lower in volume but high in purity).

Blending both streams produces an optimised fermentation feedstock suitable for high-volume biofuels or specialised bio-based outputs. In fact, the purity of DAC opens entirely new metabolic pathways, allowing the production of advanced molecules such as bio-based solvents, high-purity organic acids, or even smart proteins like insulin analogues and bioactive lipids.

This is not just a carbon-negative process. It is biomanufacturing from thin air.

From Waste to Sovereignty Alternatives – Chinese Hamster Ovary (CHO) Cells

From Waste to Sovereignty: How TITAN and ASMARA Build Europe’s New Biomanufacturing Landscape

TITAN and ASMARA are not just platforms for converting waste into energy. They are flexible, modular bio-manufacturing hubs designed to anchor a new industrial landscape—one built on sovereignty, sustainability, and regional regeneration.

At their core is a powerful integration of Hydrogen Producer Gas (HPG) and Targeted Microbial Fermentation (TMF)—a pairing that unlocks the ability to produce a vast spectrum of high-value outputs: fuels, bioplastics, chemicals, proteins, and even advanced medical bioproducts like CHO (Chinese Hamster Ovary) cells.

But more importantly, these platforms offer a way to reindustrialise rural Europe, create high-quality employment in overlooked regions, and reduce the continent’s dependence on imported fuels, chemicals, and biopharmaceutical precursors.

Syngas Project Pioneering Solutions for a Healthier Future

 Mr Hyde

Reclaiming Insulin Sovereignty: TITAN and ASMARA Platforms for Mass Biomanufacturing in Europe

Breaking the Cartel: Insulin, Inequality, and the Opportunity for European Leadership

At the heart of the global diabetes crisis lies a quiet but devastating monopoly: a life-saving medicine held hostage by a handful of manufacturers. Despite insulin being off-patent for decades, just three global pharmaceutical giants dominate the market—dictating pricing, supply, and access. This concentration of control has limited the availability of affordable insulin, especially in regions already under economic pressure.

In the United States, insulin prices have soared beyond reason. Europe, including Poland and other Central and Eastern European nations, now faces similar systemic risks: rising diabetes rates, increasing healthcare costs, and inadequate local production capacity. But amid this crisis lies a chance to rewrite the pharmaceutical supply chain—through a bold, sovereign European solution: the TITAN and ASMARA platforms.

The Insulin Crisis: A Manufactured Scarcity

Insulin is not a rare or exotic molecule. It has been biosynthesised for over 40 years using recombinant DNA technology. The science is well-understood. The demand is clear. And yet, millions of people globally still struggle to access it due to pricing structures, regulatory lock-ins, and lack of local production.

  • Patients ration insulin to make it last—resulting in amputations, blindness, kidney failure, and death.
  • Governments overspend on cartel-priced imports—diverting budgets from prevention and education.
  • Local biomanufacturing is nearly nonexistent—especially in rural or post-industrial regions where new health infrastructure is most needed.

Europe’s current strategy, relying on imports and foreign-owned production, offers no resilience, no price control, and no autonomy.

TITAN and ASMARA: A Platform for Pharmaceutical Sovereignty

The TITAN (rural) and ASMARA (urban) platforms are not pharma factories in the traditional sense. They are modular, circular, multi-output bio-industrial systems. Originally designed to transform biomass and waste into hydrogen producer gas (HPG) and ethanol, these platforms now represent the future of distributed biomanufacturing—including insulin.

Each platform features:

  • Renewable, 24-hour power and heat, generated from local waste streams
  • Targeted Microbial Fermentation (TMF) stations, already capable of industrial protein synthesis
  • CO₂-ready infrastructure for enhanced fermentation using waste or captured carbon
  • A scalable, cookie-cutter design that enables low-cost replication across the EU

By adding a dedicated pharmaceutical-grade fermentation unit, any TITAN or ASMARA site can pivot to produce biosynthetic insulin using engineered microbial strains like E. coli or yeast—in clean, stable, sovereign-controlled conditions.

This isn’t hypothetical. TITAN’s ethanol lines already handle 50,000 litres per day. The same bioreactors and feedstock management protocols can be adapted to pharmaceutical production with minimal redesign.

Business Resilience in the Face of Imminent War: A Strategic Guide for Stakeholders

And-kulak

We asked AI no. 4: AI-Driven “Legal Council” 4 Workshop Briefs

In the unsettling backdrop of escalating geopolitical tensions casting a shadow of impending war over Europe, businesses stand at a critical crossroads. The uncertainties surrounding military conflicts demand meticulous planning and fortification of strategies for businesses and their stakeholders. In this heightened risk environment, where the spectre of war looms large, proactive navigation of complexities becomes imperative. These 4 Workshops on Strategy guides are designed to illuminate the strategic considerations and preparations necessary for Power Producers, Infrastructure and Asset Owners’ business stakeholders to ensure resilience and adaptability in the face of impending wartime challenges.

Workshop 1: How Do Power Producers, Infrastructure, and Asset Owners Navigate the Threat of War?

Lessons from Nord Stream 2

The business landscape recently experienced a paradigm shift with the alleged intentional destruction of Nord Stream 2 (NS2) by one owner stakeholder to evade damages. This unsettling development raises concerns for asset owners and stakeholders, emphasising the critical need for meticulous monitoring of assets. In the shadow of war, several essential considerations related to contracts and insurance must be addressed, drawing insights from the NS2 incident.

The way AI is transforming our business is how we are transforming our industry

Amidst the Threat of War: “Polands SAF Urgency is Overshadowed by NATO Front-Line Energy Security”

Ask AI No.3: Syngas Projects  AI-Driven “Executive Strategy”: Shouldn’t we be Accelerating TITAN Deployment Amid Geopolitical Pressures and the threat of war? 

TITAN, developed by Syngas Project, stands at the forefront of a strategic energy shift, playing a pivotal role in addressing Poland’s future energy needs and fortifying NATO’s eastern flank amid escalating geopolitical pressures. TITAN, a groundbreaking platform, converts forest and wood waste through Hydrogen Producers Gas + Microbial Fermentation, on one platform to produce Second Generation Ethanol (2G EtOH). The platform’s innovative approach, replacing outdated Fischer-Tropsch technology, aligns with modern environmental standards. The decision to expedite TITAN’s deployment, driven by AI’s counsel, reflects a commitment to meet Poland’s 2030 REpowerEU, Sustainable Aviation Fuel (SAF) requirements and secure energy independence, simultaneously contributing to NATO’s regional security objectives. The pursuit of 40 TITAN units ensures a resilient, decarbonised aviation future for Poland and a strategic response to evolving geopolitical challenges.

The way AI is transforming our business is how we are transforming our industry

Why we need be concerned for LOT, not CPK

Rafał M. Socha

Friday 26 January, Warsaw Poland.

Syngas Project has been at the forefront of innovation with the development of the TITAN platform in Poland for almost a decade; specifically tailored for the production of 2nd generation ethanol (2G EtOH), a vital intermediary for fuelling Sustainable Aviation Fuel (SAF) refineries.

Despite the urgency of the situation, the groundbreaking TITAN platform finds itself still sitting on the sidelines, facing the challenge of not yet finalising the allocation of funding required to propel it through the final leg of the EPC tender. This step is crucial in making TITAN investment-ready and leading to groundbreaking, initiating a 25-year-plus construction roll-out. The financial hurdle currently faced by the project puts it in a state of uncertainty, which is particularly frustrating given the imminent 2% EU Sustainable Aviation Fuel (SAF) mandate scheduled for next year and the daunting 20% EU SAF mandate for 2030 looming on the horizon. TITAN’s potential to revolutionise SAF production in Poland and contribute to meeting these mandates makes the need for support and the release of funding even more pressing.

As the destiny of CPK teeters on the brink, the imperative to address LOT’s Sustainable Aviation Fuel (SAF) requirements becomes increasingly urgent. With each passing moment of delay, the pressure mounts on an already precarious situation, akin to an inflated balloon atop the proposed 46 billion Euro bill for CPK. Time is of the essence, and failure to swiftly meet LOT’s SAF needs jeopardises not only the realisation of CPK’s vision but also risks losing an airline and leaving behind a significant financial burden. Swift action is essential to avert this outcome and ensure the sustainable future of aviation in Poland.

Syngas Project’s TITAN: A Catalyst for Renewable Energy and Circular Economy Transformation

Warsaw 12 October 2023

In the heart of Poland, the Syngas Project, a subsidiary of London-based SOLIDEA Group Ltd, stands as a pioneering force in sustainable energy with its groundbreaking TITAN project. This short article delves into the evolution and impact of the Syngas Project, highlighting the transformative journey from the PowerCan project to the development of TITAN.

The PowerCan Project and TITAN’s Genesis:

The roots of the Syngas Project trace back to the PowerCan project at RUMIA shipyards in Gdynia in 2017, Poland. From these beginnings, the team embarked on the ambitious mission to create TITAN, initially conceived as a “Cookie Cutter” 20MW midsized, distributed, utility-scale modular Combined Heat and Power (CHP) plant with two production islands. Notably, in 2019, Island Two underwent a remarkable transformation into a Microbial Fermentation Unit, showcasing the project’s adaptability and commitment to cutting-edge technologies.

In April 2023, the European Union approved the ReFuelEU Aviation proposal which imposes blending mandates on synthetic fuels for aviation, increasing from 0.7% in 2030 to 28% in 2050.

Renewable Electricity and Biofuel Production:

Island One of TITAN continues to serve as a CHP plant, providing renewable electricity on demand. This sustainable power is not only utilised to fuel TITAN’s operations but also exported, contributing to the broader energy landscape. TITAN’s capability to produce spare renewable electricity on Island One mitigates feedstock risk through “reach and cache” policies implemented to capitalise on severe weather and seemingly more common 100-year adverse climate events which could risk the short-term availability of feedstock in future.

Simultaneously, Island Two boasts the daily production of 60,000 litres of 2G EtOH (Ethanol) through microbial fermentation and adding a significant renewable fuel source to the market. Syngas Project’s strategy is to build 12 TITAN in Poland, enough 2G EtOH (Ethanol) to supply Syngas Project’s own SAF Refinery. A local SAF refinery in Poland would establish Polish Airports as the most desirable hubs in Europe for local and intercontinental carriers feeding passengers in and out of Europe and from Europe’s dead centre, SAF being the main catalyst for success.

How Dark Hydrogen became the New Green

The “new green hydrogen” is “dark bio-hydrogen”, so called after the dark fermentation bio-manufacturing process which creates it green because its manufacture and existence are entirely organic, renewable and waterless. 

We choose to go to the moon JFK 1962 Moonshot Speech
60 years on from JFK moonshot speech

One small step ahead of carbon capture and storage CCS replacing it instead with capture and transformation CCT, thus taking the capture and recycling of waste carbon to the next level is a giant leap for mankind. 60 years on from JFK’s moonshot speech and on its anniversary Joe Biden announced the cure for cancer is the new moonshot and its through bio-technology transformation that will get us there.

TITAN and ASMARA incorporate two technologies on one platform, waste to hydrogen producer gas + microbial fermentation to manufacture fuel, chemical and material products. CCT is a well-proven process for recycling both the carbon at the smoke stack, in the waste we produce and in the waste we throw away as it is for the carbon we have already produced. We are presented with a truly value-added proposition because recycling the carbon we already have obviates the need to dig up more carbon. Through converting solid waste into producer’s gas and CCT emission technology to recycle carbon in the producer’s gas through, microbial fermentation, we can reproduce all of the products we currently manufacture from oil and gas, where the likes of transport fuels, plastics and fertilisers are produced with far less environmental impact. In manufacturing, this great array of products as an added bonus, large quantities of waterless green hydrogen is recovered as a byproduct.        

Dark bio-hydrogen presents a disruptive edge to the idea of hydrogen as an energy carrier because it does not burden our ever-depleting water supply, instead, hydrogen is recovered from changing the state of organic feedstock through a proprietary, bio-manufacturing process where carbon-rich waste biomass or bio-waste is transformed from solid state to a gaseous state and as a feedstock for fermentation.  


Hydrogen Producers Gas to PHA via Microbial Fermentation, the leather of the future?

Hydrogen is a dynamic building block but if we are to have enough of it to make a difference we are challenged to find alternative ways of getting hold of it, feeding hydrogen producer’s gas to microbes through microbial fermentation nurtures and grows microbes which once processed have the appearance, feel, durability and quality of leather and that’s because the end product is made from or grown out of microbes which replicate collagen. Producing the same biological material leather is made from, in scaled-up bio-manufacturing using hydrogen producer’s gas isn’t just the silver bullet the shoe and car industry was looking for, it also produces waterless green hydrogen as a byproduct  

Alternative Collagen can be produced after recycling waste carbon

Currently, Polyhydroxyalkanoates (PHA) are fermented to produce organic materials such as polymers, once produced these organic polymers are further processed to manufacture bio-compatible, bio-degradable plastics. The same bio-manufacturing process can also produce collagen at scale a replacement for animal skin, leather manufactured by the fermentation and processing of microbes

Though this bio-manufacturing process has been slow to catch on because traditionally it is relatively expensive, compared to low-cost oil-based plastics costs are being cut as producer’s gas demonstrates an ideal carbon-rich, abundant source of feedstock for microbial fermentation.

TITAN converts abundant low-value forest waste whilst ASMARA converts abundant and problematic, sorted municipal solid waste to produce a carbon-rich hydrogen producer’s gas enabling the ramping up of PHA fermentation and with much lower cost than in the previous production facilities. 

PHA products can replace many of the materials we use every day and not only those used to produce the items we only use once. PHA is recyclable, biodegradable, and biocompatible the opportunity to recycle PHA is unlimited and if for any reason PHA materials are landfilled or accidentally become sea fill PHA will happily break down in nature without harming the environment because PHA like natural other material is biocompatible it poses no chemical threat to our health or our environments well being. 

In the very near future, low-cost Hydrogen Producer Gas sourced PHA materials will go mainstream and replace oil-based plastics. As a result, much of the new PHA materials which will enter our supply chain in the next decade could be represented by a product which has been recycled from recovered oil-based thermoplastics as we clean up our environment.    

PHA Collagen the next step forward

Collagen roughly describes the main constructive protein of our bodies, it makes up approximately 30% of our body mass, as it does all mammals. Collagen is the fundament of our connective tissue, our bones, our skin, our tendons and our ligaments they are all made from collagen. 

PHA leather collagen can replace animal products like leather shoes and sneakers, jackets, belts and many other types of apparel that can be produced without the unnecessary environmental impact of fast fashion, most importantly they can be manufactured without the need to raise and slaughter animals for their skins.

Think of the benefits for the car industry to receive readily matching leather collagen hides all of regular size and shape. Mass-produced, PHA leather collagen is highly competitive in cost and ramping up PHA production means more affordability for items such as good quality apparel and footwear with far less production waste. The PHA value proposition for the fashion industry is top-quality materials, at competitive costs and with a zero landfill potential.       

PHA alt leather collagen is produced through Microbial Fermentation an industry enjoying dynamic growth and the potential for becoming a commonplace industrial practice that renders oil redundant in the production of fuels, chemicals and materials.